

Studies of the Reaction Behavior of Nitryl Compounds Towards Azides: Evidence for Tetranitrogen Dioxide, N_4O_2

Thomas M. Klapötke*, Axel Schulz, and Inis C. Tornieporth-Oetting

Institut für Anorganische und Analytische Chemie, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany

Received May 20, 1994

Key Words: Azides, covalent / Tetranitrogen dioxide / Nitryl azide / Chlorine azide

The reaction behavior of NaN₃, AgN₃, and Me₃SiN₃ towards FNO₂, ClNO₂, NO₂SbF₆, and NO₂BF₄ was investigated. At -30° C or below in a solvent-free system sodium azide did not react with ClNO₂, NO₂BF₄, or NO₂SbF₆. Below -30° C silver azide did not react either with neat ClNO₂. Treatment of Me₃SiN₃ with pure ClNO₂ led to the formation of ClN₃, N₂O, and Me₃SiOSiMe₃. A mechanism for this reaction has been proposed. Pure chlorine azide was isolated by fractional condensation and identified by its low-temperature Raman spectrum (liquid state). The reaction of CP₂Ti(N₃)₂ with ClNO₂ also yielded ClN₃ as the only azide-containing reaction product. Treatment of FNO₂ with NaN₃ at temperatures as low as -78° C always ended in an explosion which was

probably due to the formation of FN₃ as one of the reaction products. The reaction of NO₂SbF₆ with NaN₃ in liquid CO₂ ($-55^{\circ}C \leq T \leq -35^{\circ}C$) as the solvent afforded a new azide species which was stable at low temperature in solution only and was investigated by means of low-temperature Raman spectroscopy. The obtained vibrational data give strong evidence for the presence of tetranitrogen dioxide, N₄O₂, which can be regarded as nitryl azide (NO₂N₃). The structure and vibrational frequencies of N₄O₂ were computed ab initio at correlated level (MP2/6-31+G^{*}). In liquid xenon ($-100^{\circ}C \leq T \leq -60^{\circ}C$) NaN₃ did not react with NO₂SbF₆. A previous literature report on the preparation of N₄O₂ could not be established.

Six molecular oxides of nitrogen (N₂O, NO, N₂O₃, NO₂, N_2O_5 and NO_3 ; the latter one has not been isolated as a pure compound) and two $\pi^*-\pi^*$ bound dimers (N₂O₂ and N_2O_4) have been known for a long time^[1,2]. In fact, N_2O_4 , NO, and NO₂ were identified as early as in the 18th century and were amongst the first gaseous compounds to be isolated. Beside their academic interest in terms of structure and bonding the deeper understanding of the very nature and chemistry of binary N-O species is especially important since many of them (i) cause environmental and health problems (" NO_x "), (ii) are physiologically active (NO, N_2O , (iii) represent industrially important intermediate products (NO, NO₂), and (iv) have extensively been used as oxidizers in rocket fuels (N₂O₄, MON-25: 75% N₂O₄/25% NO)^[3]. In recent years a large effort has been made in calculating and understanding the bond properties of binary nitrogen oxides^[4-8]. Quite recently, we reported on the preparation and characterization of the intrinsically unstable nitrosyl azide $N_4 O^{[9]}$. This led naturally to the attempted synthesis of the nitryl analogous oxide NO₂N₃. In the only communication dealing with this subject dating from 1973 Doyle et al. reported on the "Reaction between Azide and Nitronium Ions" (LiN₃ and NO₂BF₄)^[10]. Whereas these authors claimed the existence of N_4O_2 in CCl₄ solution (IR data, CCl₄ solution: 2330 cm⁻¹ m, 2185 s, 2165 s, 2070 m, 1609 s; MS: observation of N_2O as the decomposition product) we have been unable to confirm their spectroscopic results.

In the present communication we report on the reaction behavior of inorganic azides towards nitryl compounds. We got strong evidence for the presence of tetranitrogen dioxide, N_4O_2 , in the reaction mixture of NO_2SbF_6 and NaN_3 in liquid carbon dioxide. The vibrational frequencies of N_4O_2 have been computed ab initio at correlated level (MP2/6-31+G*) and compare nicely with the experimentally obtained data. Therefore, the previously reported data obviously do not correspond to the claimed N_4O_2 .

Results and Discussion

Neat CINO₂ NO₂BF₄, or NO₂SbF₆ do not react with NaN₃ or AgN₃ at temperatures as low as -30° C or below. Therefore, we studied the reactivity of Me₃SiN₃ towards CINO₂ in order to generate NO₂N₃ [Eq. (1)].

$$Me_{3}SiN_{3} + CINO_{2} \xrightarrow{?} Me_{3}SiCl + NO_{2}N_{3}$$
(1)

However, we were surprised to find that ClN_3 , N_2O , Me_3Si-Cl , and $Me_3SiOSiMe_3$ had been formed in this reaction [Eq. (2)] (so far we have been unable to prove the formation of either N_3O_3 and/or NO/NO_2 as side products).

$$3 \text{ Me}_3 \text{SiN}_3 + 3 \text{ ClNO}_2 \rightarrow \text{Me}_3 \text{SiCl} + \text{Me}_3 \text{SiOSiMe}_3 \qquad (2) \\ + 2 \text{ N}_2 \text{O} + 2 \text{ ClN}_3 + \text{``N}_2 \text{O}_3 \text{''}$$

Presumably NO_2N_3 is initially formed but partly decomposes to the more thermodynamically stable (and experimentally detected) N_2O and also reacts with Me₃SiCl to give Me₃SiONO which itself is unstable with respect to the

Chem. Ber. 1994, 127, 2181–2185 © VCH Verlagsgesellschaft mbH, D-69451 Weinheim, 1994 0009–2940/94/1111–2181 \$ 10.00+.25/0

experimentally observed siloxane [Eqs. (3-7), Eq. (7) corresponds to Eq. (2)].

$$\begin{array}{ll} 3 \text{ Me}_3\text{SiN}_3 + 3 \text{ CINO}_2 &\rightarrow 3 \text{ Me}_3\text{SiCl} + 3 \text{ NO}_2\text{N}_3 & (3) \\ 2 \text{ Me}_3\text{SiCl} + 2 \text{ NO}_2\text{N}_3 &\rightarrow 2 \text{ Me}_3\text{SiONO} + 2 \text{ CIN}_3 & (4) \\ 2 \text{ Me}_3\text{SiONO} &\rightarrow \text{Me}_3\text{SiOSiMe}_3 + \text{``N}_2\text{O}_3 \text{''} & (5) \\ \text{ NO}_2\text{N}_3 &\rightarrow 2 \text{ N}_2\text{O} & (6) \end{array}$$

$$3 \operatorname{Me_3SiN_3} + 3 \operatorname{CINO_2} \rightarrow \operatorname{Me_3SiCl} + \operatorname{Me_3SiOSiMe_3}$$
(7)
+ 2 N₂O + 2 ClN₃ + "N₂O₃"

Due to the bond polarities (cf. Figure 4) it is unlikely that Me_3SiN_3 reacts with $CINO_2$ directly to give CIN_3 . However, Me_3SiCl and NO_2N_3 once generated according to Eq. (3) may very well react yielding CIN_3 (for structure and Lewis representation of CIN_3 see ref.^[11]) and metastable Me_3SiONO [cf. Eq. (4) and (5)] (Scheme 1).

Scheme 1. Reaction of Me_3SiCl with NO_2N_3 (charges at NO_2N_3 correspond to NBO charges, see below)

The formation of Me₃SiCl and Me₃SiOSiMe₃ from Me₃SiN₃ was followed by time-dependent ¹H-NMR spectroscopy (Figure 1). The spectra indicate that initially only Me₃SiCl was formed which partly reacts to give Me₃SiOSi-Me₃. As the NMR reaction was carried out on a stoichiometric scale integration of the peaks of the final products clearly points to an equimolar ratio of Me₃SiCl (9H) and Me₃SiOSiMe₃ (18H).

Experimentally, it seems to be almost impossible to distinguish between a N4 or a N2 attack of the chlorine (from Me₃SiCl) at the azide unit (cf. Scheme 1) since all preparations known for isotopically labeled azides proceed via ionic NaN₃^[12]. Therefore, it is only possible to prepare a 1:1 mixture of O₂NNNN and O₂NNNN ($N = {}^{15}N$) or fairly pure O₂NNNN.

It is worthwhile to mention that from a reaction according to Eq. (7) highly explosive chlorine azide was isolated as a pure compound on a preparative scale^[13]. The obtained IR and Raman spectra compare nicely with earlier reports on this compound and might indicate a preparative use of this route (Figure 2)^[14]. Moreover, ClN₃ was unambiguously identified by its mass spectrum. The basis peak is represented by the fragment ion ClN⁺ which is in agreement with experimental observations^[15] and quantummechanical computations^[16] that the dissociation of ClN₃ into N₂ and ClN is exothermic and highly favorable.

Since NO_2N_3 was shown to be unstable in the condensed phase at higher temperatures and it also seemed to react with Me₃SiCl (see above) we tried to avoid the formation

Figure 1. Time-dependent ¹H-NMR spectra recorded on a 1:1 stoichiometric reaction mixture of ClNO₂ and Me₃SiN₃ (cf. [Eq. (7)] (sample temperature 0°C; t = 0 corresponds to warming up the sample from -196 to 0°C; A: Me₃SiCl, B: Me₃SiN₃, C: Me₃SiOSiMe₃)

Figure 2. Raman spectrum of ClN_3 obtained according to Eq. (7) (647.09 nm, -90°C, 40 mW, 0.5 s/point, 2 scans)

of reactive by-products and treated NO_2SbF_6 with NaN_3 in CO_2 solution [Eq. (8)].

$$NO_2SbF_6 + NaN_3 \xrightarrow{CO_2(l), -50^{\circ}C} NaSbF_6 + NO_2N_3$$
 (8)

[N.B. CO_2 is a particularly nice solvent for Raman spectroscopy in solution since it only shows two sharp peaks at 1387 and 1286 cm⁻¹ (Fermi resonance of v₁ with $2v_2^{[17]}$).] The low-temperature Raman spectrum obtained from a re-

Chem. Ber. 1994, 127, 2181-2185

action mixture according to Eq. (8) unambiguously indicated the formation of a new azide-containing species (see Experimental) and was consistent with the generation of nitryl azide (Figure 3). To support our vibrational data of NO₂N₃, the structure and vibrational frequencies were computed ab initio. The geometries were fully optimized at the HF level and at correlated level according to the Møller-Plesset second-order perturbation theory [RMP(FC)]. Since the HF calculation predicted an unreliable, short terminal N3-N4 bond length (1.079 Å), the vibrational frequencies were computed at the correlated RMP2 level $(6-31+G^*)$. [N.B. The HF/6-31+G* structural parameters are: O1-N1 1.172, O2-N1 1.191, N1-N2 1.389, N2-N3 1.275, N3-N4 1.079 Å and O1-N1-O2 127.2, O1-N1-N2 113.6, O2-N1-N2 119.2, N1-N2-N3 108.8. N2-N3-N4 172.8° (C_s trans-bent structure)]. Table 1 shows the computed, scaled^[25], and observed frequencies and their assignments.

Figure 3. Raman spectrum of a reaction mixture of NaN₃ and NO₂SbF₆ in CO₂ solution (647.09 nm, -49° C, 40 mW, 0.5 s/point, 2 scans; * azide species)

Table 1. Computed (MP2) and experimentally observed vibrational frequencies $[cm^{-1}]$ of N_4O_2

Calcd. ^[a]	Scaled $(F = 0.90)$	Raman (Int.) ^[b]	Assignment	
2321 (322)	2089	2107 (8)	vNNN	
1806 (186)	1625	1556 (2)	v _{as} ONO	
1294 (255)	1165	1151 (3)	voNO	
1163 (258)	1047	1060 (10)	v。NNN	
865 (191)	779	758 (8)	δŇ₄O₂	
773 (29)	696	[c]	$\delta N_4 O_2$	
711 (7)	640	605 (3)	γN ₄ O ₂	
533 (17)	480	485 (7)	$\delta N_4 O_2$	
472 (12)	425	[c]	$\delta N_4 O_2$	
456 (3)	410	395 (2)	$\gamma N_4 O_2$	
191 (0.3)	172	[d]	2	
95 (0.01)	86	[d]		

^[a] MP2/6-31+G^{*}; the calculated intensities (in parentheses) refer to IR intensities. -^[b] 647 nm, 40 mW, -48° C, 0.5 s integration time, 2 scans. -^[c] Not observed. -^[d] Strong tailing of the laser line up to 200 cm⁻¹.

In agreement with the experimental spectroscopic results, the ab initio computation also shows a planar $C_s N_4O_2$ structure (Figure 4). All structural parameters of the (*trans*bent) N₃ unit in N₄O₂ are in good agreement with other covalent azides^[18]. Therefore, also the interpretation of

Chem. Ber. 1994, 127, 2181-2185

 N_4O_2 as *nitryl azide* seems to be justified. The computed N-O bond distances in N_4O_2 of 1.223 and 1.235 Å are slightly longer than in N₂O (1.186 Å)^[19] and in ClNO₂ (1.20 Å)^[1]. The NLMO bond orders (BO) as well as the total bond orders (ΣBO) of N₄O₂ and of N₄O for comparison are summarized in Table 2^[20]. Another remarkable difference to the bond situation in N₄O where the cyclic aromatic 6π isomer (isoelectronic to N_5^-) was calculated to be most favorable^[9] is the fact that the most stable cyclic derivative of N₄O₂ (O-NONNN, C_s) was computed to be 17 kcal mol⁻¹ less stable than the observed chain-like species (RHF/6-31+G*). In fact, at correlated level (RMP2/6- $31+G^*$) the cyclic isomer does not represent a local minimum, and the planar chain-like C_s isomer was found to be a true minimum (see above). The preference of the (experimentally observed) trans-bent O₂N-N₃ isomer can be rationalized by a high degree of π delocalization in the planar molecule and a lower degree of π delocalization in the cyclic N_4O_2 isomer (C_s) compared with the cyclic N_4O $(C_{2\nu})$ derivative.

Figure 4. Top: RMP2-optimized geometry (distances in Å, angles in °); bottom: Lewis representation with natural bond orbital (NBO)^[20,27,28] charges for N_4O_2

It is also interesting to compare N₄O₂ with the isoelectronic carbonyl azide FC(O)–N₃, the structure of which was studied by gas electron diffraction and ab initio calculations^[21]. FC(O)–N₃ exists in the gas phase as a mixture of two planar conformers (C_s symmetry), with the *cis* form (carbonyl C=O in the *cis* position with respect to the N=N bond) being slightly lower in energy than the *trans* rotamer ($\Delta E = 1.4 \pm 0.1 \text{ kcal mol}^{-1}$).

According to our experimentally observed Raman data for NO_2N_3 and due to the ab initio computed frequencies for this nitryl azide we do not support the data previously reported^[10]. However, we have so far been unable to isolate

Table 2. NLMO bond orders (BO) and total bond orders (Σ BO)

	BO(N1-N2)	BO(N2-N3)	BO(N3-N4)	$\Sigma BO(N2)$	ΣBO(N3)	ΣBO(N4)
ON-N ₃	0.99	0.99	2.52	1.70	3.54	2.29
O ₂ N-N ₃	0.92	0.97	2.50	1.56	3.48	2.30

this compound from solution, and a pure compound consisting of N₄O₂ is still yet to be prepared that is likely not possible, as this intrinsically unstable material dissociates to the more thermodynamically stable N₂O [Eq. (9)] [after correction of ZPE contributions, temperature correction for H by means of C_p and inclusion of the work term; ZPE(N₄O₂) = 13.76 kcal mol⁻¹, scaled by 0.90]. With $\Delta H_{298}^0(N_2O) = +19.6$ kcal mol^{-1[22]} the standard heat of formation for N₄O₂ can be calculated to be $\Delta H_{298}^0(N_4O_2)$ = +98 kcal mol⁻¹.

$$N_4O_2(g) \rightarrow 2 N_2O(g) \Delta_R H^0(298 \text{ K}, \text{MP2}) = -58.9 \text{ kcal mol}^{-1}$$
 (9)

In conclusion, for the first time the existence of covalently bound tetranitrogen dioxide, N_4O_2 , which can be regarded as nitryl azide, has been established by means of vibrational spectroscopy (Raman) in combination with correlated quantum mechanical ab initio computations. Morevoer, the formation of chlorine azide on a preparative scale in the reaction of ClNO₂ with Me₃SiN₃ is reported. A likely mechanism of this reaction is proposed.

We thank the *Deutsche Forschungsgemeinschaft* and the *Fonds* der Chemischen Industrie for continuous financial support. We are indebted to Dipl.-Chem. M. Kempf for recording of the mass spectra and to Professor J. Müller for providing a sample of liquid xenon.

Experimental

The reactions were carried out in glass vessels in an inert gas atmosphere (N₂, dry box). – NaN₃ (Aldrich) and NaNO₂ (Merck) were dried over P₄O₁₀ and used without further purification. NO₂BF₄, NO₂SbF₆, and Me₃SiN₃ (all Aldrich) were used as supplied. CINO₂ (from HNO₃ and HSO₃Cl) and FNO₂ (from N₂O₄ and F₂ or from NaNO₂ and F₂) were prepared by standard procedures and were purified by fractional distillation (CINO₂) or fractional condensation (FNO₂), respectively^[1]. AgN₃ and Cp₂Ti(N₃)₂ were prepared as described previously^[23].

IR: Perkin Elmer 580 B or Nicolet Magna. – Raman: Jobin Yvon Ramanor U 1000, Spectra Physics krypton ion laser (647.09 nm). – ¹H-NMR: Varian EM 360 (60 MHz), referred to SiMe₄. – MS: Varian MAT 311 A (electron impact, 70 eV).

Caution: At -35° C CO₂ has a vapor pressure of 12 bar. Appropriate safety precautions should be taken.

Computational Methods: The computations were carried out with the Gaussian 92 program by using the $6-31+G^*$ basis set for nitrogen and oxygen^[24]. The geometry of N₄O₂ was fully optimized at the HF level and at the electron-correlated second-order Møller-Plesset level [MP2 (full)] by employing standard procedures^[25].

Reaction of Me_3SiN_3 with $ClNO_2$: Gaseous ClNO₂ (0.61 g, 7.54 mmol) was condensed from a calibrated stainless vacuum line at -196° C onto Me_3SiN_3 (0.87 g, 7.54 mmol). The mixtúre was warmed to -75° C and allowed to react for 1 h. The products were

separated by fractional condensation (see below) yielding three fractions which were identified by mass spectrometry and by vibrational (IR, Raman) or NMR spectroscopy.

Fraction 1 (b.p. $\leq -85^{\circ}C$): MS, m/z (%): 44 (100) [N₂O⁺], 32 (<0.2) [O₂⁺], 30 (14)[NO⁺], 28(9) [N₂⁺. - Raman (647 nm, -100°C, 40 mW): Δv (Int.) = 2224 cm⁻¹ (4) [v₁-N₂O], 1284 (10) [v₃-N₂O]^[26]. - IR (gas, 20°C): v = 2225 cm⁻¹ s (v₁N₂O), 1882 w (vNO), 1275 vs (v₃N₂O), 588 m (v₂N₂O). - ¹H NMR (60 MHz, solvent CDCl₃): No resonance signal.

Fraction 2 ($-60^{\circ}C \le b.p. \le -10^{\circ}C$): MS, m/z (%): 77/79 (65) [ClN₃⁺], 49/51 (100) [ClN⁺], 42 (50) [N₃⁺], 35/37 (45) [Cl⁺], 32 (≤ 1) [O₂⁺], 28 (50) [N₂⁺]. – Raman (647 nm, $-90^{\circ}C$, 40 mW): Δ (Int.) = 2068 cm⁻¹ (1) ($v_{as}N_3$, ClN₃), 1136 (0.5) ($v_{sym}N_3$, ClN₃), 719 (3) (γ ClN, ClN₃), 542 (10) (δ N₃, ClN₃), 467 (0.5), 222 (5) (δ ClNN, ClN₃); (see also Figure 2). – IR (gas, 20°C): v = 2070 cm⁻¹ s ($v_{as}N_3$, ClN₃), 1140 vs ($v_{sym}N_3$, ClN₃), 718 s (γ ClN, ClN₃). – ¹H NMR (60 MHz, solvent CDCl₃): No resonance signal.

Fraction 3 (b.p. $>15^{\circ}C$): ¹H NMR (60 MHz, solvent CDCl₃): 0.37 (9H, s, Me₃SiCl), 0.02 (18H, s, Me₃SiOSiMe₃). – MS, *m*/*z* 162 [Me₃SiOSiMe₃], 108/110 [Me₃SiCl⁺].

In order to follow the reaction of Me_3SiN_3 with $CINO_2$ affording Me_3SiCl and $Me_3SiOSiMe_3$ time-dependent ¹H-NMR spectra were recorded (see Figure 1).

Reaction of NaN_3 with FNO_2 : Gaseous FNO_2 (0.49 g, 7.54 mmol) was condensed from a calibrated stainless steel vacuum line at -196° C onto NaN₃ (0.49 g, 7.54 mmol). The reaction mixture was warmed to -115° C (m.p. of $FNO_2 - 166^{\circ}$ C). At this stage the reaction vessel exploded heavily. Two attempts were made to treat FNO_2 with NaN₃ in this way.

Reaction of $Cp_2Ti(N_3)_2$ with $ClNO_2$: In two separate reactions gaseous ClNO₂ (0.61 g, 7.54 mmol, 1:1 stoichiometry; 1.23 g, 15.08 mmol, 1:2 stoichiometry) was condensed from a calibrated stainless steel vacuum line at -196° C onto Cp₂Ti(N₃)₂ (1.98 g, 7.54 mmol). The reaction mixture was warmed to -50°C and allowed to react for 1 h. Volatile products were separated by fractional condensation, and ClN₃ was found by Raman spectroscopy to be the only azide-containing product from these reactions (both stoichiometries). The ¹H-NMR spectrum of the solid residue indicated in both cases a complex mixture of unreacted $Cp_2Ti(N_3)_2$, generated Cp₂TiCl(N₃) and Cp₂TiCl₂ and further unidentified titanocene species. -- Raman (647 nm, -90°C, 40 mW, 1:1 stoichiometry): Δv $(Int.) = 2074 \text{ cm}^{-1} (1) (v_{as}N_3, ClN_3), 1285 (4) (v_3N_2O, N_2O), 1136$ (1) $(v_{sym}N_3, ClN_3)$, 791 (1) $(v_1ClNO_2, ClNO_2)$, 719 (3) $(\gamma ClN, \gamma ClN_3)$ ClN₃), 542 (6) (δ N₃, ClN₃), 414 (2) (ν_2 ClNO₂, ClNO₂), 373 (v₅ClNO₂, ClNO₂), 223 (4) (δClNN, ClN₃).

Reaction of NO_2SbF_6 with NaN_3 in CO_2 : This reaction was carried out in a thick-walled 5-mm Raman tube (Pyrex glass). Carbon dioxide (ca. 0.5 ml of liquid) was condensed at -196° C onto a mixture of NO_2SbF_6 (0.100 g, 0.35 mmol) and NaN_3 (0.023 g, 0.35 mmol). The glass tube was flame-sealed and warmed to -50° C. The reaction mixture was allowed to react at this temp. for 2 h. After it had been warmed to -35° C for 30 min it was recooled to -50° C and subsequently allowed to react for another 4 h. Raman

Chem. Ber. 1994, 127, 2181-2185

spectra of the reaction mixture were recorded at low temperature. - Raman (647 nm, -48°C, 50 mW): Δv (Int.) = 2107 cm⁻¹ (8) (vasN3, N4O2), 1386 and 1280 (out of scale, CO2 Fermi resonance), 1556 (2) $(v_{as}ONO, N_4O_2)$, 1151 (3) (v_sONO, N_4O_2) , 1060 (10) (vsN3, N4O2), 758 (8) (δN4O2, N4O2), 605 (3) (δN4O2, N4O2), 485 (7, br) ($\delta N_4 O_2$, $N_4 O_2$), 395 (2) ($\gamma N_4 O_2$, $N_4 O_2$) (see also Figure 3).

In another experiment we did not seal the glass reaction tube but used a stainless steel needle valve and only 0.1 ml of liquid CO2. After the experiment gas phase IR spectra were recorded and N_2O was shown to be the only detectable species besides CO_2 $(N_2O: v_1 = 2225 \text{ cm}^{-1})^{[26]}.$

Reaction of NO₂SbF₆ with NaN₃ in Xe: This reaction was carried out in analogy to the reaction in liquid CO₂. However, in this case the reaction mixture was kept at -100°C for 6 h and allowed to react at -75°C for 1 h. (For safety reasons the glass reaction tube was not exposed to a higher pressure than the vapor pressure of Xe at -75°C.) Raman spectra of the reaction mixture were recorded at -100° C. Only traces of an azide and some N₂O were detected. -Raman (647 nm, -110° C, 50 mW): Δv 2130 cm⁻¹ ($v_{as}N_3$).

- ^[1] N. N. Greenwood, A. Earnshaw, Chemistry of the Elements, Pergamon, Oxford, 1984.
- [2] N. Burford, J. Passmore, J. C. P. Sanders, Mol. Struct. Energ.
- 1989, 11, 53.
 [3] I. C. Tornieporth-Oetting, T. M. Klapötke in *Combustion Efficiency and Air Quality* (Eds.: I.Hargittai, T. Vidoczy), Plenum, New York, in press.
- ^[4] R. D. Harcourt, J. Chem. Soc., Faraday Trans. 1991, 87, 1089.
- [5] R. D. Harcourt, J. Coltan. Soc., Valuation 1991, 64, 399.
 [6] R. D. Harcourt, J. Mol. Struct. (Theochem.) 1992, 259, 155.
 [7] R. D. Harcourt, J. Mol. Struct. (Theochem.) 1990, 206, 253.
 [8] R. D. Harcourt, Chem. Phys. Lett. 1994, in press.

- ^[9] A. Schulz, I. C. Tornieporth-Oetting, T. M. Klapötke, Angew. Chem. 1993, 105, 1697; Angew. Chem. Int. Ed. Engl. 1993, 32, 1610.
- ^[10] M. P. Doyle, J. J. Maciejko, S. C. Busman, J. Am. Chem. Soc. 1973, 95, 952. [11] R. L. Cook, M. C. L. Gerry, J. Chem. Phys. 1970, 53, 2525.
- ^[12] D. Christen, H. G. Mack, G. Schatte, H. Willner, J. Am. Chem. Soc. 1988, 110, 707.
- ^[13] K. Dehnicke, Angew. Chem. 1967, 79, 253.
- ^[14] K. Dehnicke, *Adv. Inorg. Chem.* **1983**, *26*, 169. ^[15] D. J. Benard, M. A. Chowdhury, B. K. Winker, T. A. Seder, H. H. Michels, J. Phys. Chem. 1990, 94, 7507.
- ^[16] M. Otto, S. D. Lotz, G. Frenking, Inorg. Chem. 1992, 31, 3647.
- [17] Gmelin Handbuch der Anorganischen Chemie, Kohlenstoff, part C, No. 14, Verlag Chemie, Weinheim, 1970, p. 345, and references therein.
- ^[18] I. C. Tornieporth-Oetting, T. M. Klapötke, Comments Inorg. Chem. 1993, 15, 137. [19] M. Lacy, D. H. Whiffen, Mol. Phys. 1982, 45, 241.
- ^[20] ^[20a] A. E. Reed, P. v. R. Schleyer, J. Am. Chem. Soc. 1990, 112, - [20b] A. E. Reed, P. v. R. Schleyer, Inorg. Chem. 1988, 1434. 27, 3969.
- ^[21] H.-G. Mack, C. O. Della Védova, H. Willner, J. Molec. Struct. 1993, 291, 197.
- ^[22] D. A. Johnson, Some Thermodynamic Aspects of Inorganic Chemistry, Cambridge Univ. Press, Cambridge, 1982, p. 264.
- Chemistry, Cambridge Univ. Press, Cambridge, 1982, p. 204.
 [^{23]} I. C. Tornieporth-Oetting, T. M. Klapötke, A. Schulz, P. Buzek, P. v. R. Schleyer, Inorg. Chem. 1993, 32, 5640.
 [^{24]} M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, K. Andres, K. Raghavachari, J. S. Binkley, C. Gonzales, R. L. Martin, D. J. Fox, D. J. DeFrees, J. Baker, J. J. P. Stewart, J. A. Pople, GAUS-SIAN 92 Gaussian Inc. Pittsburgh PA, 1992 SIAN 92, Gaussian Inc., Pittsburgh, PA, **1992**. ^[25] W. J. Hehre, L. Radom, P. v. R. Schleyer, J. A. Pople, *Ab Initio*
- Molecular Orbital Theory, Wiley, New York, 1986.
- ^[26] D. F. Smith, J. Overend, R. C. Spiker, L. Andrews, Spectrochim. Acta, Part A, 1972, 28,87
- [27] A. Reed, L. A. Curtiss, F. Weinhold, *Chem. Rev.* 1988, 88, 899.
 [28] A. Reed, P. von R. Schleyer, *J. Am. Chem. Soc.* 1987, 109, 7362. [187/94]